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Abstract—The Motor Imagery Brain-Computer Interfaces
(MI-BCIs) have shown considerable promise for applications
in neural rehabilitation. However, improving the practicality
and interpretability of MI-BCIs remains a critical challenge.
Unlike previous methods that focus generally on either spatial,
frequency, or temporal domains with coarse-grained segmenta-
tion schemes, this study proposes a novel fine-grained spatial-
frequency-time (FGSFT) framework, aiming to enhance the effi-
ciency and reliability of MI-BCIs. Multi-channel MI EEG record-
ings are firstly processed through multiscale time-frequency
segmentation and spatial segmentation schemes, yielding fine-
grained spatial-frequency-time segments (SFTSs). The key SFTSs
are then selected with a tailored wrapper-based feature selection
approach. Discriminative MI EEG features are extracted using a
divergence-based common spatial pattern algorithm with intra-
class regularization and classified using an efficient linear support
vector machine (SVM). The proposed framework was evaluated
on the BCI IV IIa and SDU-MI datasets, demonstrating state-
of-the-art performance in terms of information transfer rate
(ITR) Meanwhile, the proposed spatial segmentation strategy
can significantly improve the performance of MI-BCIs when
using a larger number of electrodes. Additionally, the fine-grained
Motor Imagery Time-Frequency Reaction Map (MI-TFRM) and
time-frequency topographical map can be obtained with the
proposed framework enabling visualization of the subject-specific
dynamic neural process during motor imagery tasks, facilitating
the devising of personalized MI-BCIs. The FGSFT framework
significantly advances the accuracy, ITR, and interoperability
of MI-BCIs, paving the way for future neuroscientific research
and clinical applications in neural rehabilitation and assistive
technologies.

Index Terms—Motor imagery, brain-computer interface, EEG,
common spatial pattern.

I. INTRODUCTION

IN the field of neural engineering, Motor Imagery Brain-
Computer Interfaces (MI-BCIs) offer a transformative ap-

proach to bridging human cognition with external systems
by decoding electroencephalogram (EEG) signals [1], [2]. By
facilitating non-muscular interaction, MI-BCIs offer individu-
als with severe motor impairments renewed opportunities for
communication and control [3]. This transformative paradigm
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not only improves the quality of their lives but also lays a
foundation for innovative rehabilitation strategies [4]. Despite
significant progress, improving the accuracy, robustness, and
interpretability of MI-BCI systems remains challenging.

Deep learning approaches, including convolutional and re-
current neural networks, have emerged as powerful tools due to
their end-to-end feature learning capabilities and their capacity
to model complex temporal dependencies [5]. Nevertheless,
these models often require large, high-quality datasets for opti-
mized performance, a condition rarely met in MI-BCI practice
due to the inherently noisy EEG signals and the limited
EEG data obtained from controlled MI tasks [6]. Furthermore,
while attention-based and hybrid deep learning architectures
have been applied to identify discriminative features and key
temporal or spatial locations [7], [8], the underlying decision-
making processes remain unclear [9], making it difficult to
map their learned representations onto the neurophysiological
underpinnings of motor imagery. This limitation will be further
compounded by focusing only on either spatial or temporal
aspects, or segmenting frequency bands at a coarse-grained
level, possibly resulting in missing the subtle but critical
neural oscillatory patterns. Such interpretability deficits not
only hinder the neuroscientific understanding of dynamic brain
mechanisms but also pose practical barriers to clinical adop-
tion and personalization. In scenarios where subject-specific
adaptations are important, the inability to elucidate how these
models make their decisions impedes the development of
individualized neural decoding strategies and limits the MI-
BCI system’s credibility and efficacy.

Although some previous studies have taken initial steps
toward incorporating time-frequency domain segmentation,
these strategies often remain at the coarse-grained stage and
fail to integrate with spatial segmentation methods [10], [11].
While several studies have explored multi-scale time and fre-
quency segmentation strategies [12], [13], Few have presented
a holistic approach that unifies finely granulated segmentation
across spatial, frequency, and temporal domains. Without such
integrated fine-grained strategies, current methods struggle to
identify and preserve the fine-grained and critical spatial-
frequency-time features that are pivotal for achieving both
high classification accuracy and interpretability. The absence
of a comprehensive framework that leverages multi-scale time-
frequency segmentation with a spatially segmented architec-
ture underscores a key unmet need in MI-BCI research. This
gap motivates us to develop approaches capable of represent-
ing the complex, subject-specific neural dynamics that govern
motor imagery tasks in a more interpretable and performance-
optimized manner.
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To address these limitations, we propose a novel fine-
grained spatial-frequency-time (FGSFT) framework. Our ap-
proach introduces a multiscale time-frequency domain seg-
mentation combined with a comprehensive spatial segmen-
tation strategy to generate discriminative Spatial-Frequency-
Time Segments (SFTSs) from multi-channel EEG data. By
creating multiple subsets of electrodes corresponding to vari-
ous spatial domains using both manual and automatic channel
selection strategies, our method allows for a more compre-
hensive capture of the complex spatial patterns inherent in
EEG data. A wrapper-based feature selection algorithm is then
employed to identify the most informative SFTSs, enabling
superior classification accuracy and improved computational
efficiency. Notably, this work not only focuses on improving
the accuracy of subject-specific brain-computer interfaces but
also aims to investigate the subject-specific neural mechanisms
implicated in motor imagery tasks through fine-grained time-
frequency topographical maps generated by the proposed
framework. These visualizations improve interpretability and
provide insights into individualized neural activities, enabling
the design of more personalized and effective MI-BCIs. The
main contributions of this work are:

• We propose a novel fine-grained spatial-frequency-time
(FGSFT) framework that significantly enhances the ex-
traction and classification of MI-BCI signals. The FGSFT
framework integrates a multiscale time-frequency seg-
mentation with a spatial segmentation strategy, enabling
the accurate extraction of discriminative SFTSs from
multi-channel EEG data.

• We introduce a wrapper-based feature selection algorithm
to identify the most informative STFSs, improving both
the accuracy and efficiency of MI-BCI classification.

• We achieve state-of-the-art performance on two bench-
mark MI-BCI datasets in terms of information transfer
rate (ITR), demonstrating the reliability and efficiency of
the proposed approach.

• The fine-grained Motor Imagery Time-Frequency Reac-
tion Map (MI-TFRM) and time-frequency topographical
map can be obtained with the proposed framework to
allow for visualization of the subject-specific dynamic
neural process and the individual variability in neural re-
sponses during motor imagery tasks, thereby significantly
improving the model interpretability and facilitating the
design of personalized MI-BCIs.

The remainder of this paper is organized as follows: In
Section II, we comprehensively review the existing literature
on MI-BCI methods. Section III details the experimental
materials and the proposed methods. Section IV presents the
evaluation results on two MI-BCI datasets. Section V provides
the visualization and discussion of the obtained findings.
Finally, Section VI draws the conclusion.

II. RELATED WORKS

Early efforts in MI-BCI research focused mainly on optimiz-
ing spatial filters to extract discriminative features from EEG
signals. The Common Spatial Pattern (CSP) algorithm, which
relies on the covariance between spatially filtered EEG signals,

has been widely used for feature extraction [14]. Despite its
popularity, the CSP method is prone to overfitting and sensi-
tivity to noise, leading to the development of Regularized CSP
(RCSP) [15]. RCSP incorporates quadratic penalties based on
prior knowledge, yielding improved robustness and generaliza-
tion. Subsequently, advanced variants have explored Lp-norms
to further refine spatial filters. For example, Park et al. [16]
introduced CSP-Lp to identify optimal p values for improved
MI performance, while Cai et al. [17] developed CSP-Lp/q

to enhance generalization across multiple BCI competition
datasets. Complementary approaches have redefined CSP as
a divergence maximization problem. Samek et al. [18], [19]
introduced a divergence-based CSP framework that utilizes
gradient descent on an orthogonal manifold, enabling sparse
spatial filters that have shown effectiveness in multi-class MI
paradigms [20]–[22]. Parallel to these endeavors, Riemannian
geometry-based methods have gained traction by formulating
MI-BCI feature extraction as a problem within a geometric
manifold [23], [24]. Although these Riemannian geometry-
based methods often demonstrate robust performance, their
high computational complexity and extensive feature dimen-
sionality limit their feasibility in real-world applications [25].

With the advent of powerful computing resources, deep
learning has emerged as another dominant approach for MI-
EEG feature extraction and classification [26]. Convolutional
neural networks (CNNs) have been extensively explored, rang-
ing from compact architectures like EEGNet [27] to deeper
networks that extract complex spatial-temporal patterns [28]–
[30]. Recurrent neural networks (RNNs), with their inherent
capability to model temporal dependencies, have also been em-
ployed [31], [32]. Moreover, attention-based architectures have
been proposed to highlight the most discriminative features
[8], [33]. Recently, transformer-based models such as Vision
Transformer (ViT) have gained considerable attraction in MI-
BCI fields due to their global dependency capturing capability,
further enhancing the accuracy of MI-BCI [7], [34], [35].
Nevertheless, these deep learning architectures also depend
heavily on substantial training data and often exhibit limited
interpretability. Meanwhile, the attention patterns generated
by attention modules cannot straightforwardly translate into
human-understandable explanations of the underlying neural
mechanisms.

To address the limited exploration of frequency dynamics,
numerous approaches have adopted various frequency-domain
strategies. The sub-band CSP (SBCSP) [10] pioneered decom-
posing EEG signals into multiple frequency bands, while filter-
bank CSP (FBCSP) [11] further integrated feature selection
algorithms to identify key frequency bands. Afterward, it
was found that applying the time domain segmentation strat-
egy effectively enhanced the performance of CSP-based MI-
BCI algorithms [36]. Subsequently, more sophisticated time-
frequency segmentation methods have been introduced. For
instance, Miao et al. [12] and Wang et al. [13] subdivided EEG
data into multiple time-frequency segments to capture a richer
set of discriminative features. Recently, Pei et al. [37] greatly
extended the FBCSP with a novel tensor-based frequency fea-
tures combination method, which combined tensor-to-vector
projection, fast Fourier transform, CSP, and feature fusion,
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resulting in robust improvements in MI-BCI accuracy. The
work visualized the personalized useful frequency bands and
confirmed the importance of frequency information in MI-BCI
systems. Chen et al. [38] developed an optimization strategy
based on dynamic time windows, improving the efficiency of
the SSVEP-BCI system. Additionally, Riemannian geometry-
based methods have also incorporated similar segmentation
strategies [39], [40], and multiscale CNN architectures have
been proposed to exploit multi-band temporal patterns [41].
Despite these advancements, they mainly rely on coarse-
grained segmentation schemes and fail to fully exploit fine-
grained multi-dimensional EEG feature extraction.

In addition to time-frequency segmentation, spatial opti-
mization has also attracted extensive attention. Several studies
proposed data augmentation approaches based on channel-
level and time-level perturbation [8], [42], enhancing the deep
learning-based MI-BCI algorithms. On the other hand, CSP-
based time-frequency optimization using multiple intervals
and bands has been demonstrated in [43]–[46], while others
integrated channel selection with RCSP [47], or combined
channel selection with deep learning models [48], [49]. Jiang
et al. [50] proposed a spatio-temporal filtering strategy for
CSP algorithm, which can update the spatial and tempo-
ral filters automatically. More recent work [51] presented a
method to extract the multi-view time-frequency decomposed
spatial feature matrix using CSP-based and Riemannian-based
algorithms, achieving improved accuracy of MI-BCI. These
methods mark important steps toward capturing localized spa-
tial features and improving classification performance. How-
ever, they generally applied channel weighting strategy (e.g.,
CSP-based methods) or combined it with single-scale spatial
segmentation strategy (e.g., channel selection-based methods),
and the multi-scale fine-grained spatial features of EEG have
not been fully explored.

These gaps in the literature motivate us to investigate the
fine-grained spatial-frequency-time (FGSFT) framework. By
simultaneously and systematically segmenting the EEG data
in spatial, frequency, and temporal domains and coupling
these strategies with effective feature selection methods, our
proposed approach significantly improves both performance
and interpretability of MI-BCIs.

III. MATERIALS AND METHODS

In this work, a fine-grained spatial-frequency-time frame-
work is proposed for motor imagery brain-computer interface.
Fig. 1 illustrates the overall architecture of the proposed
framework. In the training phase, the pre-processed EEG data
are first segmented into fine-grained SFTSs, and then the
discriminative EEG features are extracted by divCSP. After
that, an effective wrapper-based feature selection approach is
applied, and the information of the selected SFTs is saved.
Finally, the optimized ensembled SVM model is trained. In
the testing phase, the testing EEG data are segmented into
optimized SFTSs according to the selected SFTs information
obtained from the training phase, and they are then sent into
the optimized model to obtain the predicted label. More-
over, the thorough time-frequency-spatial analyses using the

Fig. 1. The overall architecture of the proposed BCI framework.

interpretable feature selection approach are discussed in the
Discussion section.

A. EEG datasets

Two motor imagery EEG datasets were adopted in this study
to evaluate the proposed algorithms comprehensively, where
the first one was the BCI IV IIa dataset [52], [53], a widely
used and publicly available MI-BCI dataset, and another was
a BCI dataset collected by ourselves. The BCI IV IIa dataset
comprised 25-channel EEG data from nine subjects, where 22
of which were scalp EEG channels (as shown in Fig. 2(a)),
and the remaining three were monopolar electrooculography
(EOG) channels. The EEG data was sampled at a frequency of
250 Hz and pre-filtered by a bandpass filter in the range of 0.5
Hz to 100 Hz, including a 50 Hz notch filter to avoid line noise.
This study focuses on the EEG channels, omitting the EOG
channels to concentrate on the brain activity relevant to motor
imagery tasks. The dataset was collected with a typical motor
imagery experimental paradigm, and the details of which are
illustrated in Fig. 3(a). This paradigm consisted of four types
of motor imagery tasks: left hand, right hand, tongue, and feet,
and these four tasks are equally and randomly distributed in
the collection procedure of 288 trials per subject during the
training session, with the same number of trials conducted
in the test session. Note that these sessions were conducted
on separate days. Each session consisted of six blocks, with
each block containing 48 trials. Subjects were given short rest
periods between blocks to prevent fatigue. To simplify the
task, we only consider the left/right-hand imagery task in this
work. Each trial in this dataset is segmented from 2 seconds
to 5 seconds post-stimulus onset.

The SDU-MI (Shandong University - Motor Imagery)
dataset was collected for a more comprehensive evaluation
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of the proposed framework. This dataset contained EEG
recordings from ten participants (7 males and 3 females), all
aged 18 to 25 years and affiliated with Shandong University.
These recordings were captured using the NeuSen-W64 EEG
data acquisition system, equipped with 59 electrodes aligned
according to the extended 10-20 international system (see
Fig. 2(b)). The EEG signals were sampled at 1000Hz, with a
reference electrode located between Pz and Cz, and a ground
electrode between Fpz and Fz. Three separate binary motor
imagery tasks were performed: imagining left versus right-
hand movements (with a fixed elbow position to concentrate
on hand motion), left versus right elbow movements (with
a fixed hand position to concentrate on elbow motion), and
combined left elbow and hand versus right elbow and hand
movements (e.g., simulating actions like reaching out and
grasping a cup). These tasks were chosen to reflect distinct
motor control areas, enriching the applicability of datasets in
developing brain-computer interfaces. Participants completed
these tasks in three separate sessions conducted on the same
day, with a rest period of 10-30 minutes between sessions.
The order of the tasks was randomized and determined by the
participants’ preferences. Experimentally, each motor imagery
task followed a consistent paradigm, similar to the paradigm
in BCI IV IIa dataset. The paradigm for each binary task
comprised five blocks, each containing 40 trials where the
two classes of motor imagery were equally and randomly
presented. As shown in Fig. 3(b), a trial began with a
preparatory phase (0-2 seconds), where cues in the form of
images depicting the hand, elbow, or hand plus elbow were
displayed, followed by a directive phase (2-4 seconds), where
cues indicating the direction of imagined movement (left or
right) were shown. Participants were instructed to conduct
their motor imagery following these cues. The trial concluded
with a rest period (6-9 seconds), signified by a blank screen,
allowing for mental recovery before proceeding to the next
trial. This study was approved by the Ethics Committee of
Qilu Hospital of Shandong University.

In the preprocessing phase, the raw EEG data from both
datasets were uniformly resampled to a frequency of 250Hz.
To simulate real-world conditions and validate the robustness
of our model, we refrained from excluding any trials or
channels, preserving the authenticity and complexity of EEG
datasets. To evaluate the efficacy of the proposed algorithm,
we adopted a Leave-One-Block-Out (LOBO) cross-validation
strategy in both two MI databases for within-session evalua-
tion. This validation approach ensures that each block of data
is used once as the test set, with the remaining blocks forming
the training set. Specifically, a 6-fold LOBO cross-validation
was conducted on the BCI IV IIa dataset. Concurrently, the
SDU-MI dataset, with five blocks per session, was subjected
to a 5-fold LOBO cross-validation. Considering that the BCI
IV IIa database has two sessions, and the second session was
determined as the test set in the BCI competition, we also
report the accuracy and ITR on its test set for cross-session
evaluation. It is important to note that both the classifier
training and feature ranking procedures were only performed
on the training set, avoiding information leakage.

Fig. 2. The electrode placement of (a) BCI IV IIa dataset and (b) SDU-MI
dataset

Fig. 3. The EEG collection paradigm of two databases. (a) Paradigm of BCI
IV IIa dataset. (b) Paradigm of SDU-MI dataset.

B. S-F-T segmentation scheme

To comprehensively capture the temporal, spectral, and
spatial characteristics of EEG signals, we introduce a novel
framework for multi-scale, fine-grained segmentation across
time, frequency, and space dimensions. In the time domain,
the scale is defined by the length of the time window, and
the time segmentation is executed by windowing. We have
developed a multi-scale temporal windowing approach with
window lengths of 0.2, 0.4, 0.7, 1.0, 1.25, and 1.5 seconds,
each overlapping by 50%. For instance, Figure 4(a) illustrates
the multi-scale temporal windows corresponding to EEG data
with a duration of 1.5 seconds. All temporal segments are
obtained using rectangular windows, ensuring that for each
scale, the last window terminates at the end of the EEG data.
Furthermore, this multi-scale temporal windowing strategy,
featuring six distinct window lengths, also applies to EEG
data exceeding 1.5 seconds.

In the frequency domain, the scale corresponds to the
bandwidth of the frequency, and the frequency segmentation
is implemented by band-pass filtering. We proposed a multi-
scale frequency band set with bandwidths of 4, 8, 16, and
32 Hz, each with 50% overlap. Figure 4(b) depicts these
bands, where each line represents the passband of a bandpass
filter, with the left and right endpoints indicating the start
and stop frequencies, respectively. Notably, the final scale
with a 4 Hz bandwidth encompasses the range of 30-34
Hz. For different frequency bands, we utilize a 5th-order
Butterworth bandpass filter to process the EEG signals, thereby
acquiring the segmented signals in the frequency domain. To
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preserve the time-domain information and eliminate the phase
distortion, zero-phase filtering was employed. Specifically, the
input signal was initially filtered in the forward direction,
and the output after this forward filtering step was reversed
and processed again through the same filter in the backward
direction, resulting in a zero-phase filtered signal.

In the spatial domain (channel domain) for EEG analysis,
the selection of an optimal set of electrodes is an NP-hard
problem. This is because the number of possible combinations
of electrodes grows exponentially with the number of elec-
trodes, thus making exhaustive search impractical for larger
sets. Accordingly, this study introduces a hybrid approach that
combines manual and data-driven channel selection to conduct
the spatial segmentation of EEG signals. The manual selection
of electrodes is grounded in the well-established ERD/ERS
phenomenon during motor imagery tasks. Specifically, motor
imagery of left and right-hand movements induces contralat-
eral desynchronization (ERD) over the sensorimotor cortex,
while ipsilateral synchronization (ERS) can also occur [3].
This contralateral ERD and ipsilateral ERS symmetry is a
key neurophysiological foundation leveraged in the manual
channel selection process. Given this principle, our manual
selection of channels was based on creating symmetrical (left-
right) electrode subsets to capture and exploit this ERD/ERS
symmetry effectively. Fig. 5(a) illustrates ten different elec-
trode configurations for the 22-channel EEG data in the BCI
IV IIa dataset. The first eight configurations are systematically
designed to explore the spatial dynamics of motor-related
ERD/ERS phenomena. The last two configurations are gen-
erated using a correlation-based channel selection algorithm
proposed in [54], comprising 8 and 12 channels, respectively.
Furthermore, Fig. 5(b) displays 20 electrode subsets used for
the 59-channel EEG data from the SDU-MI database. The
first 18 electrode sets are manually designed, while the final
two sets are also generated by the same channel selection
algorithm mentioned in [54], containing 9 and 18 channels,
respectively. The manually designed subsets systematically
target symmetrical ERD/ERS patterns. For instance, some sets
focus on the frontal lobes, as shown in set 4 of Fig. 5(b), and
the occipital lobes, as in set 10 of Fig. 5(b). They explore
how these regions contribute to motor imagery tasks, even
though primary ERD/ERS phenomena occur in the central
sensorimotor areas. Furthermore, electrode subsets such as set
12 apply decimation strategies to reduce redundancy while
maintaining hemispheric symmetry. By designing electrode
sets that correspond to different spatial patterns and comple-
menting them with automatic channel selection algorithms, we
can effectively enrich the spatial features extracted for various
EEG-based tasks.

C. Motor imagery EEG feature extraction

In this study, discriminative motor imagery EEG features are
extracted by incorporating a divergence-based CSP algorithm
with within-class regularization. This approach is designed for
a binary classification scenario with EEG data comprising D
channels. The aim of our methodology is the optimization of
an orthogonal rotation matrix R ∈ RD×D, which is calibrated

Fig. 4. The fine-grained segmentation schemes in time and frequency
domains. (a) The fine-grained temporal segmentation scheme. (b) The fine-
grained frequency segmentation scheme.

Fig. 5. The electrode selection strategy for two datasets. (a) Ten electrode
groups sets for BCI IV IIa dataset. (b) Twenty electrode groups sets for SDU-
MI dataset.

to simultaneously maximize the inter-class Kullback-Leibler
(KL) divergence of covariance matrices and minimize the
intra-class KL divergence.

The objective function J(R) is as follows:

J(R) =(1− λ) ·DK

(
RT

d Σ1Pd

∥∥RT
d Σ2Rd

)
− λ · 1

2N

C∑
c=1

N∑
i=1

DK

(
RT

d Σ
i
cRd

∥∥RT
d ΣcRd

)
, (1)

where DK represents the KL divergence, Id is the identity
matrix truncated to d dimensions, Rd = IdR is the truncated R
matrix. Σc, Σi

c denote the average and trial-specific covariance
matrices of class c, respectively, both pre-whitened by the ma-
trix P = (Σ1+Σ2)

− 1
2 . Unlike the original CSP method which

can be solved by a generalized eigenvalue decomposition and
thus yields a closed-form solution, maximizing the divergence
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Algorithm 1 The algorithm of divCSP
Require: X1 (EEG data for class 1), X2 (EEG data for class

2), dimensionality d of the extracted subspace
Ensure: Optimal spatial filter matrix Wsf

1: Calculate covariance matrices Σ1 for X1 and Σ2 for X2

2: Compute whitening matrix P = (Σ1 +Σ2)
− 1

2

3: Initialize random orthogonal rotation matrix R0

4: Apply whitening and rotation Σ∗
1 = R0PΣ1P

TRT
0 , Σ∗

2 =
R0PΣ2P

TRT
0

5: repeat
6: Compute the gradient of J(R) at the identity on the

manifold
7: Compute optimal step size U using line search
8: Update the rotation matrix Rk+1 = URk

9: Rotate the matrices Σ∗
1 = UΣ∗

1U
T , Σ∗

2 = UΣ∗
2U

T

10: until maximum iterations are reached
11: Compute spatial filter matrix V T = IdR

T
k+1P

12: Compute eigenvectors E of V TΣ1V
13: Apply PCA: Wsf = V E

between distributions and integrating additional regularization
terms does not yield a direct closed-form solution. Conse-
quently, gradient-based methods, such as manifold-constrained
gradient descent, become indispensable. The comprehensive
analysis of the gradient computation for the objective function
and the detailed derivation process is thoroughly elaborated
in [18]. To optimize J(R), a subspace method is employed
(see Algorithm 1), aiming to derive d spatial filters within a
d-dimensional subspace, thereby refining the rotation matrix
R. This is achieved through iterative updates, guided by the
gradient of J(R), within a line search strategy on the manifold
of the orthogonal matrices [55]. The process iterates until
convergence.

After optimization, the spatial filters Wsf are utilized to
extract features, which are defined as the normalized logarithm
of the variance of the spatially filtered EEG signals. Formally,
the feature vector for the u-th Spatial-Frequency-Time (SFT)
segment is calculated as:

F (u) = − ln

(
Var(W

(u)
sf X(u))

1
d

∑d
i=1 Var(W

(i)
sf X(u))

)
, (2)

where Var(·) signifies the variance operation over the spatially
filtered data. For our experimental setup, we empirically set
the dimensionality d = 4 and the regularization coefficient
λ = 0.1 to balance the computational efficiency and feature
discriminability effectively.

D. Feature selection approach

In this study, we proposed a wrapper-based feature selection
algorithm for motor imagery EEG feature optimization. The
core objective of the algorithm is to construct an optimized
ensemble model with multiple sub-classifiers in spatial, tem-
poral, and frequency domains. The detailed procedure of the
algorithm is described in Algorithm 2. Initially, the algorithm
segments the EEG data across the spatial, frequency, and
temporal domains, creating an array of SFTSs. Then, the

discriminative MI EEG features of each segment are extracted
using the divCSP algorithm for motor imagery EEG data.
The extracted features are then classified using a linear SVM
with a LOBO cross-validation scheme, providing a robust
estimation of the classification performance for each segment.
Subsequently, the algorithm ranks these segments based on
their classification accuracies and iteratively merges the top-
performing segments to enhance the feature space with a
step size of D. This process involves concatenating the high-
dimensional features from selected SFTSs and re-evaluating
the performance of the resemble model using linear SVM
classifiers. The final ensemble model comprises the top-K
best-performing classifiers, each corresponding to a distinct
set of SFTSs, ensuring a comprehensive representation of
the EEG data. Considering the balance between accuracy
and efficiency, the hyperparameters D and K are set to 5
and 3, respectively. Note that the proposed wrapper-based
feature selection algorithm only outputs the information of
the selected SFTSs and the trained model weights in training
stage, and no training data were used in the testing phase.

E. Classification method

SVM as a classic machine learning classifier has been
extensively applied in various motor imagery classification
tasks [20]. It excels by optimizing the separation margin
between distinct classes, effectively identifying the optimal
decision boundary or hyperplane within the feature space. In
this study, the efficient linear SVM is leveraged to classify
linearly separable EEG features. The linear kernel is defined
as:

K(xi, xj) = xT
i xj , (3)

where K represents the kernel function, xi and xj are the i-th
and j-th feature vectors. All hyperparameters employed match
the default configuration of the ’fitclinear’ function in Matlab.

In the testing phase of our proposed model, the classifi-
cation procedure is executed on testing sets to evaluate the
generalizability and robustness of the trained ensemble model.
Each classifier in the optimized ensemble model, denoted as
the top-K classifiers, is utilized to predict the class labels of
the test data independently. Specifically, for each classifier,
the corresponding critical SFTS information is identified, and
the SFTSs are extracted accordingly from the test data. Then,
the divCSP features are derived from the extracted SFTSs.
Subsequently, these features are fed into the respective linear
SVM classifier, yielding probability scores for specific classes.
The final prediction is determined by averaging these proba-
bilities across all classifiers, thereby integrating their collective
intelligence to enhance the prediction accuracy. For a detailed
description of the testing phase, refer to Algorithm 3.

IV. RESULTS

This section illustrates the performance of the proposed
MI-BCI approach on both BCI IV IIa dataset and SDU-MI
dataset. Two metrics are used for model performance evalua-
tion, namely, classification accuracy and information transfer



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Algorithm 2 The Proposed SFTSs Selection Algorithm
Require:

EEG training dataset with Ns segments, each with prede-
fined length and channels
Corresponding labels of the EEG dataset
Nc predefined channel groups
Nf predefined frequency band groups
Nt predefined time window groups

Ensure:
Optimized ensemble of K classifiers

1: Initialize N = Nc ×Nf ×Nt SFTSs
2: Create struct array Seg of size N each with specific SFTS

information
3: Initialize accuracy array Acc of size N
4: for i = 1 to N do
5: Extract SFTS based on Seg[i]

- Select channel group
- Apply band-pass filter for frequency band
- Truncate signal using time window

6: Extract subset EEG dataset for this SFTS
7: Extract d-dimensional divCSP features
8: Classify features using Linear SVM with LOBO cross-

validation
9: Store the average accuracy in Acc[i]

10: end for
11: Sort Acc in descending order to obtain Acc∗, reorder Seg

to get Seg∗

12: Initialize merged accuracy array AccM
13: Set counter count = 0
14: for j = D to N step D do
15: count← count+ 1
16: Initialize feature set FeaSet
17: for k = 1 to j do
18: Extract SFTS corresponding to Seg∗[k]
19: Extract divCSP features and add them to FeaSet
20: end for
21: Concatenate features in FeaSet to form FeaMerged
22: Classify FeaMerged using Linear SVM with LOBO

cross-validation
23: Store the average accuracy in AccMerged[count]
24: Save SFTS info and trained model
25: end for
26: Sort AccMerged in descending order to get AccMerged∗

27: Select top-K accuracies with corresponding SFTSs info
and models as final model

rate (ITR). Detailly, the classification accuracy quantifies the
proportion of correct predictions made by the model, while the
ITR reflects both accuracy and speed, measuring the efficiency
of a BCI system in bits per minute [56].

A. Results on BCI IV IIa dataset

Since this study focuses on the development of efficient
BCI algorithms, we mainly utilized the initial 1.5 seconds of
motor imagery EEG data for training and testing, reporting
the mean and overall accuracies achieved. To comprehen-
sively demonstrate the efficacy of the proposed method, we

Algorithm 3 Testing Phase for the FGSFT-based MI-BCI
Require:

Test EEG dataset
Top-K optimized sub-classifiers with corresponding SFTS
information

Ensure:
Predicted class for the test EEG dataset

1: Initialize an empty list ClassProb
2: for each classifier Ci in the top-K ensemble do
3: Identify the SFTSs corresponding to Ci

4: Extract and concatenate divCSP features from the test
EEG data for the selected SFTSs

5: Use Ci to classify the features and obtain the class
probabilities

6: Append the obtained class probabilities to ClassProb
7: end for
8: Compute the average of probabilities in ClassProb to get

ProbAvg
9: Determine the predicted class based on the highest value

in ProbAvg
10: return Predicted class

conducted seven ablation experiments, and the results are
shown in Table I. These experiments individually segmented
EEG data in the spatial domain, frequency domain, and time
domain (denoted as experiments ’S’, ’F’, ’T’ in Table I),
as well as in spatial-frequency, frequency-time, and spatial-
time domains (represented as experiments ’SF’, ’FT’, ’ST’
in Table I). The last experiment evaluates the performance
of our proposed SFT method (indicated by experiment ’SFT’
in Table I). For each experimental configuration, the mean
accuracies of LOBO cross-validation on both validation and
test datasets are reported. We can see from Table I that, on
the test dataset, the experiment of the proposed SFT method
achieves the highest mean accuracy of 83.68% on the test set,
which is significantly superior to that of the ’ST’ experiment at
77.66% (p = 0.0329, pairwise t-test) and the ’SF’ experiment
at 76.45% (p < 0.001, pairwise t-test). Owing to the limited
number of EEG channels in the BCI IV IIa database (22
channels), the impact of spatial segmentation is not particularly
significant. Although the accuracy of the ’SFT’ experiment
(83.68%) exceeds that of the ’FT’ (82.90%), the difference
is not statistically significant (p = 0.55, pairwise t-test).
Due to the same reason, the overall accuracy of the ’STF’
method (85.55%) is slightly lower than that of the ’FT’ method
(85.59%) (not statistically significant, p = 0.96, pairwise t-
test). Additionally, the results of the ’S’, ’F’, ’T’ experiments
suggest that for this dataset, the temporal segmentation of
EEG data has the most significant effect on classification
accuracy, followed by frequency domain segmentation, and
finally spatial domain segmentation.

The length of used EEG data affects the ITR performance.
A longer EEG data length can include more useful EEG
features but will also reduce the ITR performance, resulting in
a higher delay for the designed BCI system. Fig. 6 illustrates
the classification accuracy under different lengths of used
EEG data. It is obvious that the longer EEG data length
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TABLE I
THE AVERAGE ACCURACIES (%) OF DIFFERENT SEGMENTATION SCHEMES ON VALIDATION AND TEST SETS OF BCI IV IIA.

Experiments Evaluation Dataset 1 2 3 4 5 6 7 8 9 Mean Overall

S Validation set 72.22 61.81 87.5 67.36 58.33 68.75 65.28 84.72 88.19 72.69 71.25Test set 68.75 62.85 78.59 64.81 60.07 71.18 58.68 90.63 72.69 69.8

F Validation set 87.5 66.67 83.33 70.14 79.86 77.08 85.42 89.58 89.58 81.02 77.95Test set 82.99 64.47 77.66 76.04 76.04 67.36 67.82 86.46 75 74.87

T Validation set 78.47 59.72 94.44 77.78 71.53 72.92 84.72 95.14 99.31 81.56 79.23Test set 70.37 61.92 90.86 83.1 62.04 70.95 71.99 95.6 85.19 76.89

SF Validation set 82.64 70.83 85.42 67.36 78.47 69.44 81.94 90.28 89.58 79.55 78.00Test set 82.87 66.2 77.66 76.27 78.24 72.45 76.97 84.72 72.69 76.45

FT Validation set 88.89 74.31 93.06 81.94 89.58 79.86 93.75 95.14 97.92 88.27 85.59Test set 88.08 67.25 88.08 79.63 87.15 74.54 84.72 95.14 81.48 82.9

ST Validation set 77.08 64.58 94.44 80.56 71.53 74.31 81.94 91.67 97.92 81.56 79.61Test set 76.39 64 89.12 83.33 63.19 71.88 72.8 96.99 81.25 77.66

SFT Validation set 87.5 74.31 90.97 84.72 88.19 79.17 91.67 95.14 95.14 87.42 85.55Test set 87.96 67.01 88.08 88.77 81.83 76.97 85.88 95.95 80.67 83.68

Fig. 6. The average accuracies and ITRs of different EEG lengths on
validation and test sets of BCI IV IIa dataset.

corresponds to the higher mean accuracy of both validation and
testing accuracy. Employing EEG data spanning 0-3 seconds
yields mean testing and validation accuracies of 88.48% and
91.44%, respectively. We also selected EEG data spanning
0.5-2.5 seconds commonly used in previous studies, yielding
a validation accuracy of 90.05% and a testing accuracy of
86.88%. However, when we consider the ITR performance, a
shorter length of used EEG data is better. Utilizing EEG data
from 0-1 seconds achieved an ITR of 27.59 bits/min and 20.49
bits/min on the validation and testing sets respectively, while
data spanning 0-1.5 seconds resulted in ITRs of 20.36 bits/min
and 15.77 bits/min correspondingly. A significant decrement
in ITR is observed with EEG data durations extending to 0-
3 seconds, culminating in ITRs of 13.20 bits/min and 10.96
bits/min for the validation and testing sets respectively.

B. Results on SDU-MI dataset

For the SDU-MI dataset, six ablation experiments are also
conducted to evaluate the effectiveness of the segmentation
strategies across various domains, and the results are demon-
strated in Table II. All three motor imagery tasks, including
left-hand and elbow (LHE) vs. right-hand and elbow (RHE),
left-hand (LH) vs. right-hand (RH), left-elbow (LE) vs. right-
elbow (RE), are considered. Consistent with the results on

BCI IV IIa dataset, our SFT approach obtains the best classi-
fication performance for all three motor imagery tasks with a
mean accuracy of 78.25%, 80.80%, and 76.95%, respectively.
In the last column of Table II, the overall mean accuracy
over all three motor imagery tasks is computed. Statistical
analysis suggests that the overall accuracy of our ’SFT’
method (78.67%) is significantly higher than that of the ’ST’
method (77.00%, p = 0.018, pairwise t-test), the ’FT’ method
(70.88%, p < 0.001, pairwise t-test), and the ’SF’ method
(72.30%, p < 0.001, pairwise t-test). Aligning with findings
from the BCI IV IIa dataset, the single-domain segmentation
results on this dataset (i.e., results from ’S’, ’F’, and ’T’) also
highlight that the time segmentation strategy contributes most
significantly to the enhancement of classification accuracy for
all three motor imagery tasks. However, Differing from the
results on the BCI IV IIa dataset where spatial segmentation
showed no significant contribution to model accuracy improve-
ment, the results from the SDU-MI dataset indicate that spa-
tial segmentation substantially aids in accuracy enhancement,
outperforming frequency segmentation. The overall accuracy
with the ’S’ method is significantly higher than that of the
’F’ method (68.07% vs. 64.12%, p = 0.0238, pairwise t-
test). Furthermore, the joint-domain segmentation results (i.e.,
results from ’SF’, ’FT’, and ’ST’) suggested that the ’ST’
method is significantly higher than the ’FT’ method (77.00%
vs. 70.88%, p = 9.23 × 10−6, pairwise t-test). These results
demonstrate the effectiveness of spatial domain segmentation
in enriching the feature set for enhanced model performance,
particularly in EEG data with a large number of electrodes.

Fig. 7 depicts the mean accuracy and ITR metrics of
models with different lengths of used EEG data on SDU-
MI dataset. In this experiment, the LHE vs. RHE motor
imagery task is considered, and 50% of the training set is
used for model evaluation to speed up the experiment. It can
be seen that the longest-used EEG data corresponds to the
highest mean accuracy (76.05%) but the lowest mean ITR
(6.17 bit/min), while the shortest-used EEG data corresponds
to the lowest mean accuracy (71.75%) but the highest mean
ITR (12.82 bit/min). Balanced performance is observed with
EEG data segments spanning 0 to 1.5 seconds, which provides
a balanced compromise between mean classification accuracy
(74.90%) and ITR (11.13%).
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TABLE II
THE AVERAGE ACCURACIES (%) OF DIFFERENT SEGMENTATION SCHEMES ON SDU-MI DATASET.

Experiments Paradigm 1 2 3 4 5 6 7 8 9 10 Mean Overall

S
LHE vs. RHE 94.5 77 64.5 73.5 63 84 64 63.5 58.5 53 69.55

68.07LH vs. RH 89.5 83 71.5 71 63.5 65 64 52 66 54.5 68
LE vs. RE 84 79.5 68 77.5 72.5 53.5 50.5 68.5 62.5 50 66.65

F
LHE vs. RHE 94 87.5 57 57 62.5 86.5 49.5 56 59 54.5 66.35

64.12LH vs. RH 93.5 90 55 51.5 60.5 59.5 47 53.5 73 51.5 63.5
LE vs. RE 81 93 67.5 52.5 69 50.5 47.5 58 54 52 62.5

T
LHE vs. RHE 93 89.5 67 82 69.5 85.5 49 61.5 67 68.5 73.25

71.75LH vs. RH 95 91 76 68 70 59.5 55 60.5 83 66.5 72.45
LE vs. RE 80 93.5 70.5 69.5 74 52.5 59.5 71.5 62 62.5 69.55

SF
LHE vs. RHE 95 89 71.5 76 63 80 64.5 62.5 68 57 72.65

72.3LH vs. RH 95 92.5 69.5 68.5 72.5 62 63.5 57 84.5 66.5 73.15
LE vs. RE 86 92 70.5 77 77.5 55.5 62 69.5 64.5 56.5 71.1

FT
LHE vs. RHE 96 90 79.5 76.5 66 80 55 53 64 59.5 71.95

70.88LH vs. RH 97.5 94.5 82 60.5 73.5 53 53 58 90 54.5 71.65
LE vs. RE 80.5 95.5 75 66.5 78 56 53 70 59 57 69.05

ST
LHE vs. RHE 95 93.5 77.5 82 75 84 60 68.5 69.5 70.5 77.55

77LH vs. RH 95.5 92.5 79.5 74 76 60.5 66 68.5 83 72.5 76.8
LE vs. RE 87 94 76.5 82 83.5 53 70.5 81.5 65 73.5 76.65

SFT
LHE vs. RHE 95 92 83 85.5 72 82 65.5 60.5 73.5 73.5 78.25

78.67LH vs. RH 96 93 87.5 78 83 61.5 72.5 69.5 90.5 76.5 80.8
LE vs. RE 87.5 95 81.5 78.5 83 53 71.5 81 66.5 72 76.95

Fig. 7. The average accuracies and ITRs of different EEG lengths on SDU-
MI database.

V. DISCUSSIONS

In this work, a fine-grained spatial-frequency-time segmen-
tation framework is proposed for efficient motor imagery BCI.
The proposed FGSFT method first decomposes the input EEG
signals into multiple SFTSs and then the divCSP with intra-
class regularization algorithm is applied to those SFTSs to
obtain robust EEG features during motor imagery. A dedicated
wrapper-based SFTS selection algorithm is designed to select
the most significant features in time, frequency, and spatial
domains. Results show that the proposed framework can
effectively improve the overall performance of MI-BCI.

Although some previous works also proposed various seg-
mentation strategies in time domain [12], [20], their selected
window length was not narrow enough to capture fine-grained
and multi-scale EEG features, challenging to achieve optimal
accuracy. In this study, we propose to segment the raw EEG
signals with a fine-grained and multi-scale strategy in time
domains, where the shortest window length is defined as
200ms. Fig. 8 illustrates the performance of the proposed
method under various temporal segmentation strategies. Both

multi-scale and single-scale segmentation strategies were con-
sidered. The multi-scale segmentation strategy considered the
shortest duration scale of a segment and the time segmentation
strategies of all scales above this scale. For example, under
the multi-scale segmentation strategy, the minimal duration of
a 0.2s segment includes all segmentation strategies in time
domain at the scales of 0.2 s, 0.4 s, 0.7 s, 1 s, 1.25 s, and
1.5 s. In contrast, single-scale segmentation only considers all
time segmentation strategies at the shortest duration scale of
a segment. It is shown in Fig. 8 that the single-scale of 0.2
s achieves the best performance in cross-session evaluation
(The model is evaluated on the test set), and the more fine-
grained scale of 0.1 s is too short to obtain useful EEG
features. In within-session evaluation (The model is evaluated
on the validation set), the single-scale of 0.7 s has the
best performance. It can also be observed that the multi-
scale segmentation strategy can enhance the model accuracy,
especially in within-session evaluation. Although the multi-
scale time segmentation strategy with a scale of 0.1 s achieves
a slightly higher accuracy on both the validation set and the
test set, its computational complexity is substantial and the
performance improvement is not significant. Therefore, we
chose the multi-scale time segmentation strategy of 0.2 s in this
study. On the other hand, our previous study suggested that
the multi-scale frequency segmentation method significantly
improved the accuracy of MI-BCI [47]. Accordingly, we
adopted the same multi-scale segmentation strategy in the
frequency domain in this work. Besides, a novel segmentation
strategy implemented by manual and automatic channel selec-
tion methods is proposed, effectively enriching EEG features.
The results described in Table I and Table II suggest that the
segmentation strategy in time domain plays a key role, and the
spatial segmentation strategy is essential when the number of
EEG electrodes is high. These results manifest the significance
of our fine-grained and multi-scale segmentation strategies
to MI-BCI research, providing a foundational framework for
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Fig. 8. The performance of the proposed method on the validation set and test
set of BCI IV IIa database with different fine-grained segmentation strategies
in the time domain. The dashed lines indicate the performance obtained by
multi-scale temporal segmentation strategies, while the solid lines indicate the
performance achieved by single-scale temporal segmentation strategies.

subsequent studies to enhance the accuracy and functionality
of future MI-BCI systems.

Table III illustrates the comprehensive performance compar-
ison between the proposed FGSFT method and other recently
proposed and classic MI-BCI algorithms on BCI IV IIa
dataset. It can be observed that the proposed FGSFT methods
are superior to other MI-BCI methods in both accuracy and
ITR metrics. Particularly, the average accuracy of FGSFT
method with a selected window of 0-3 seconds (88.48%) is
significantly higher than other comparison methods (p < 0.05,
pairwise t-test), while the average ITR of FGSFT method
with a selected window of 0-1.5 seconds (15.64 bit/min) is
significantly higher than other compared methods (p < 0.05,
pairwise t-test). Among these works, some also adopted seg-
mentation strategies in time, frequency, or spatial domain.
Zhang et al. [43] and Zheng et al. [44] applied the CSP-
based time-frequency optimization with 5 time intervals and
17 frequency bands. Malan et al. [45] presented a CSP-based
time-frequency optimization strategy with 6 time intervals and
3 frequency bands. Concurrently, Gaur et al. [46] proposed a
sliding window CSP method where 9 overlapped time intervals
were used for temporal optimization. Besides, Tiwari et al.
[47] integrated channel selection algorithms with the RCSP
method, while Ghorbanzadeh et al. [48] and Wang et al. [49]
combined the channel selection algorithms with deep learning
models, achieving spatial optimization of EEG. However, these
methods cannot obtain the fine-grained spatial-frequency-time
features as attained in this work, limiting their interpretability
as well as classification accuracy and ITR. These comparative
results demonstrated that the proposed FGSFT framework sets
a new benchmark in binary motor imagery tasks, achieving
state-of-the-art performance. Its ability to accurately segment
and utilize the EEG signal components significantly enhances
the overall effectiveness of MI-BCI systems, paving the way
for more accurate and efficient BCI applications.

The visualization of the fine-grained MI-TFRM reflects the
reaction intensity of a subject in time and frequency domains
[20]. In the fine-grained MI-TFRM, each pixel is weighted by
the mean LOBO cross-validation accuracy value of all its cor-

responding SFTSs. The fine-grained MI-TFRMs for subjects
in the two datasets are depicted in Fig. 9. In our previous
work, the MI-TFRMs were proposed, but the time-frequency
resolution was relatively low. The comparison between the
traditional MI-TFRMs presented in our previous work [20]
and the fine-grained MI-TFRMs for subjects in the BCI IV
IIa dataset is shown in Fig. 10. Clearly, with the fine-grained
segmentation strategy applied in time and frequency domains,
the resolution of the fine-grained MI-TFRMs is significantly
enhanced. With these high-resolution fine-grained MI-TFRMs,
more evident individual differences can be observed and ana-
lyzed. For example, the A-3 subject mainly activates the alpha
band (around 10 Hz) during the motor imagery task, while A-
5 exhibits spectral activations in the gamma band (around 30
Hz). Because a fine-grained spatial segmentation is conducted
in this study, a more informative time-frequency topographical
map can be visualized for each subject. From Fig. 11 (a), it can
be found that the cerebral cortex is significantly activated in
the alpha band during 1.5-2.0 seconds, and the occipital area
contributes the most. The time-frequency topographical map
shown in Fig. 11 (b) reveals that in 0.5-1.0 seconds, the theta
band is activated, with a whole-brain activation pattern. From
1.5 to 3.0 seconds, the high-beta band and gamma band in the
pre-frontal lobe contain the most discriminative EEG features
of motor imagery tasks. These informative time-frequency
topographic maps reveal fine-grained individual differences
in the neural mechanisms underlying motor imagery tasks.
It is suggested that the brain regions activated during motor
imagery tasks vary across individuals in terms of timing and
EEG frequency bands, indicating the necessity of applying
segmentation in spatial domain. Neural activity associated
with motor imagery is not confined to the central brain
regions but may also manifest in the prefrontal and occipital
lobes. This phenomenon might be linked to the participants’
dominant hand preferences and the involvement of complex
limb motor imagery [57], [58]. Therefore, the time-frequency
topographical map can be used to effectively analyze the
dynamic pattern of cognitive processes during motor imagery
tasks, offering profound insights into the neural correlation
undergoing motor imagery.

To better illustrate the feature selection procedure of the
proposed method, Fig. 12 visualizes the details of the fea-
ture selection procedure in SDU-MI dataset. It can be seen
that although a large amount of SFTSs are generated by
the spatial-frequency-time framework, the proposed feature
selection method effectively selects a small portion (3%-20%)
of the SFTSs with discriminative EEG features, significantly
reducing the feature dimensionality, and thus making the motor
imagery BCI system more efficient.

VI. CONCLUSIONS

In this work, a novel MI-BCI algorithm based on a fine-
grained spatial-frequency-time framework has been proposed.
The algorithm was evaluated on the publicly available BCI
IV IIa dataset and SDU-MI dataset collected by ourselves
with multiple binary motor imagery paradigms, obtaining a
state-of-the-art average ITR. An EEG spatial segmentation
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TABLE III
PERFORMANCE COMPARISONS ON BCI IV IIA DATASET

No. Author Year Method Selected
Window (s) S1 S2 S3 S4 S5 S6 S7 S8 S9 Average

Accuracy (%)
Average ITR

(bit/min)
1 Lotte et al. [59] 2010 SRCSP 0.5-2.5 88.89 63.19 96.53 70.14 63.19 63.89 78.47 95.83 92.36 78.2 8.44
2 Arvaneh et al. [60] 2011 SSCSP 0.5-2.5 92.4 68 99.3 78.5 69.4 66 81.9 96.5 91 82.55 9.98
3 Alimardani et al. [61] 2017 GSW+MNN - 85.11 76.27 83.72 81.85 74.87 78.13 78.6 74.87 82.32 79.53 -
4 Gaur et al. [62] 2018 SS-MEMDBF 0.5-2.5 91.49 60.56 94.16 76.72 58.52 68.52 78.57 97.01 93.85 79.93 8.94
5 Zhang et al. [43] 2018 TSGSP ≥ 2 87 64.7 93.8 74.3 90.4 63.9 91.4 95.8 81.3 82.5 -
6 Singh et al. [63] 2019 RMDRM 0.5-2.5 91.61 63.28 97.2 72.91 64.08 69.71 81.25 96.52 92.3 80.98 9.26
7 Yu et al. [64] 2020 p-LTCS 0.5-2.5 92.36 65.28 97.22 71.53 78.47 71.53 85.42 95.14 92.36 83.26 10
8 Malan et al. [45] 2021 DTCWT-CSP -0.5-4 85.6 66.7 97.2 77.1 82.6 69.4 79.1 95.4 86.1 82.13 5.64
9 Gaur et al. [46] 2021 SW-LCR 0-3 86.81 64.58 95.83 67.36 68.06 67.36 80.56 97.22 92.36 80.02 7.2

10 Zheng et al. [44] 2022 PSPD 0-3 91.43 66.07 94.64 75.36 78.57 66.79 97.14 95.36 87.86 83.69 8.64
11 Tiwari et al. [47] 2022 RCSPA+SVM - 83.79 74.18 73.92 94.01 69.32 84.71 89.36 79.11 82.18 81.71 -
12 Ghorbanzadeh et al. [48] 2023 DGAFF - 91.44 78.77 93.97 78 78.37 73.78 88.51 85.86 87.68 84.04 -
13 Srimadumathi et al. [65] 2024 CMW+CNN 0-4 84.15 67.95 97.5 80.36 84.29 67.86 81.5 80.26 96.00 82.20 6.48
14 Wang et al. [49] 2024 MI-BMInet 0-3 86.98 72.65 94.95 76.66 93.84 81.11 91.17 98.27 93.26 87.65 10.17
- Liu et al. - FGSFT 0-1.5 87.96 67.01 88.08 88.77 81.83 76.97 85.88 95.95 80.67 83.68 15.64
- Liu et al. - FGSFT 0.5-2.5 92.94 67.25 96.64 81.48 87.04 75.58 92.48 98.61 89.93 86.88 11.99
- Liu et al. - FGSFT 0-3 93.75 66.55 97.22 89.81 89 76.97 95.02 98.26 89.7 88.48 10.92

Fig. 9. The fine-grained weighted MI-TFRMs for two databases.

Fig. 10. The resolution comparison between fine-grained MI-TFRMs and
traditional MI-TFRMs in BCI IV IIa dataset. (a) The fine-grained MI-TFRMs
generated with the proposed FGSFT method. (b) The traditional MI-TFRMs
generated using multiscale time-frequency method [20].

technique combined with manual and automatic channel se-
lection processes was proposed, while fine-grained and multi-
scale EEG segmentation strategies in time and frequency
domains were presented. Meanwhile, the divCSP with intra-
class regularization was employed to extract robust EEG fea-
tures. The iterative refinement and selection of top-performing
SFTSs were adopted to construct a robust ensemble of SVM

Fig. 11. The time-frequency topographical maps. (a) The time-frequency
topographical map (left) and the electrode group significance map (right) for
the 8-th subject in BCI IV IIa dataset. (b) The time-frequency topographical
map (left) and the electrode group significance map (right) for the first subject
in SDU-MI dataset.

classifiers to ensure the effectiveness of our model. Addition-
ally, the high-resolution fine-grained MI-TFRMs and time-
frequency topographical maps were visualized according to the
proposed feature ranking algorithms, significantly enhancing
the interpretability of the model by depicting the dynamic
cognitive processes during motor imagery tasks. This work
not only offers a more accurate and efficient BCI framework
but also can contribute to elucidating subject-specific neural
mechanisms related to motor imagery. Through the proposed
fine-grained spatial-frequency-time feature selection approach,
the individual differences in the brain activities during the
motor imagery task can be well visualized, facilitating the
design of personalized MI-BCI systems. Future work will
focus on enhancing cross-subject generalization by transfer
learning fused with time-frequency topographical maps and
extending the framework to multi-class paradigms and real-
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Fig. 12. The feature selection procedure for all subjects in SDU-MI dataset.
The red line indicates the accuracy of sorted single SFTSs, while the blue
line indicates the accuracy of merged SFTSs. The stars point out the selected
top-3 accuracy, and the dashed line indicates the peak accuracy of merged
SFTSs.

world applications, paving the way for more effective and
adaptable BCI systems.
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