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Music plays an essential role in the healthy life of humans. However, few sound processor algorithms
effectively encode the fine structure cues of music, resulting in inferior music perception for cochlear
implant (CI) users, especially in pitch and melody. In this study, an improved music vocoder algorithm
is proposed based on the conjunction of harmonic and time sampling (HTS). The algorithm includes
two branches: the first, the pitch (i.e., fundamental frequency, F0) and important harmonics of music sig-
nal are extracted. Second, on the existing CI channels, the music signal is split into multiple sub-bands
and the relevant envelopes are respectively matched to the F0 and important lower harmonics, then
modulated and aligned with appropriate intervals which are not less than the auditory nerve response
absolute refractory period (ANR-ARP). The violin sounds were synthesized and experimented with the
CI tone vocoder, and the HTS algorithm was compared and evaluated with the classical continuous inter-
leaved sampling (CIS) algorithm. Twenty normal hearing (NH) subjects were recruited for audiometry
experiments. The results showed that the pitch ranking scores of the HTS were obviously better than that
of the CIS, and in quiet and noisy conditions the melody recognition rates of the HTS were 46.4% and 49%
higher than that of the CIS, respectively. And further results showed that the HTS algorithm also increased
the timbre perception of CI vocoder music. It is suggested that the HTS algorithm has the potential to
enhance the music perception of CI users.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Patients with severe to profound sensorineural hearing loss can
partially recover their hearing with a cochlear implant (CI) [1]. In
quiet situations, CI users can recognize speech sentences with an
accuracy of up to 90% [2], but their music perception is not satis-
factory[3,4]. For post-lingual CI users, music is usually perceived
as out-of-tune, discordant, indistinct, and emotionless sounds [5].
In addition, CI users report that certain bowed instrument sounds
(such as the violin and cello) are the worst for recognition [6,7].

However, music is essential for human life and the external
sound processor plays an important role in the CI system, the audi-
tory perception of CI users is mainly determined by the vocoder
algorithm [8]. Music and speech signal characteristics have several
differences. Traditional sound processor algorithmsmainly focused
on the transmission of spectral envelope features that were impor-
tant for speech perception but ignored the transmission of fine
structure features that were more important for music perception
[9,10]. A variety of CI encoding algorithms have been studied. For
example, the continuous interleaved sampling (CIS) algorithm
encoded the equally spaced average amplitude of the divided
band-pass filtered output signal, which can effectively convey the
spectral envelope characteristics of speech [11]. The subsequently
advanced combination encoder (ACE) algorithm could dynamically
select stimulation electrodes and better convey the time domain
changes of the filter output amplitude of each sub-band [12] by
improving the stimulation rate of the channel signal. To improve
pitch perception of speech and music signals, some studies pro-
posed encoding algorithms that endeavor to transfer fine structure
features, such as the harmonic single sideband encoder (HSSE)
algorithm, which encoded fine structure features by frequency
downshifting [13]. Another algorithm increased the transfer of fine
structure features by triggering the time series at the zero crossing
of the sub-bands [14]. Although these encoding algorithms
improved the speech perception of CI users to a certain extent, it
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is still difficult to listen to music for most CI users, especially in
pitch and timbre perception.

In fact, the basic characteristics of music signals include
rhythm, melody, intensity, and timbre. In general, music signals
are composed of several sounds coming from different instru-
ments, but each instrument can be regarded as an independent
sound source. To analyze the composition and characteristics of
music signals, we start with a single-instrument sound signal.
The sound of a single instrument is excited by a source, and the
resonant cavity of the instrument remains relatively unchanged
and emits the sound, so the sound forms the specific timbre. When
different notes are played from the instrument, the vibration fre-
quencies (i.e., the fundamental frequency or F0) of the excitation
source are changed according to the notes. As shown in Fig. 1(a),
the frequency domain transfer function of the instrument (i.e., sys-
tem function) remains basically unchanged, that is, the spectrum
envelope of the music signal produced by the instrument is similar,
and different music notes of the instrument (i.e., music-1 and
music-2 in Fig. 1(a)) is expressed by the spectrum fine structure
features of the emitted sound. The actual spectrograms of notes
C4 and E4 of the violin instrument are represented by music-1
and music-2 in Fig. 1 (a), respectively. The harmonics distribution
(also known as the frequency domain fine structure) of different
notes (or pitches) of the instrument is obviously different. Mean-
while, this difference should also correspond to the envelope vari-
ation rate of each sub-band of the CI sound processor. The fine
structure is different from note to note. However, the musical note
is the basic element that dominates the pitch or melody of music
signals, and the total number is 120, which can be divided into
Fig. 1. (a) A schematic diagram of the spectrum structure of different music notes of the i
excitation-2 corresponds to music note-2. The intermediate system function represents th
spectrogram of violin instrument sound /F4/ (top), /G#4/ (bottom).

Table 1
Correspondence between notes and fundamental frequencies (Hz).

Octave C (do) C#/Db D (re) D#/Eb E (mi) F (fa)

0 16.3 17.3 18.4 19.4 20.6 21.8.
1 32.7 34.6 36.7 38.9 41.2 43.7
2 65.4 69.3 73.4 77.8 82.4 87.3
3 130.8 138.6 146.8 155.6 164.8 174.6
4 261.6 277.2 293.7 311.1 329.2 349.2
5 523.3 554.4 587.3 622.3 659.3 698.5
6 1046.5 1106.8 1174.7 1244.5 1318.5 1396.9
7 2093.1 2217.5 2349.4 2489.1 2637.1 2793.9
8 4186.1 4435.0 4698.8 4978.2 5274.2 5587.8
9 8372.2 8870.1 9397.5 9956.3 10518.3 11175.6

2

10 octaves. As shown in Table 1, each note corresponds to a fixed
F0 [15]. Thus, although the existing CI products with 22 electrodes
can convey the rhythm and intensity characteristics of music well,
it is impossible to encode the pitch of notes completely. Even for
individual instrumental sounds, this crude spectral resolution
encoded with constant time sampling to convey musical note cues
makes it difficult for CI users to obtain tonal or melodic perception
effectively. To improve music perception of CI users, the musical
pitch cues should be encoded explicitly on the existing nerve elec-
trode pathways with an appropriate improved algorithm. There-
fore, this paper introduces the optimized encoder algorithm on
existing electrodes structure, which is based on harmonic time–
frequency sampling (HTS) of music note.

The signal output of each sub-band of CI processor needs to be
sent to each electrode of the cochlear auditory nerve pathway.
Then the stimulation signal makes the neuron fire, evokes the con-
duction of the electrical signal of the auditory nerve, and further
reconstructs the auditory perception in the cortex. However, the
electrical stimulation signal must comply with nerve conduction
response characteristics [16,17]. Neuro-electrophysiology has
known that the auditory nerve has a phase-locking feature [18],
while the harmonic cues of the music have obvious periodicity in
time domains. Besides, the auditory nerve response absolute
refractory period (ANR-ARP) is the minimum response duration
of an auditory nerve stimulus, that is, the auditory nerve will not
respond to other stimuli within an ANR-ARP [19,20]. Therefore,
the electrical stimulation interval should not be less than the
ANR-ARP. This time limitation must be fully considered in the pro-
posed encoding algorithm, and the pitch feature time coding is
nstrument. The excitation-1 corresponds to music note-1signal spectrum-1, and the
e transfer characteristic of the instrument resonant cavity. (b) The two-dimensional

F#/Gb G (so) G#/Ab A (la) A#/Bb B (si)

23.1 24.5 25.9 27.5 29.1 30.9
46.3 49.0 51.9 55.0 58.3 61.7
92.5 98.0 103.8 110.0 116.5 123.5

185.0 196.0 207.6 220.0 233.1 246.9
370.0 392.0 415.3 440.0 466.2 493.9
740.0 784.0 830.6 880.0 932.4 987.8

1480.0 1568.0 1661.3 1760.0 1864.7 1975.6
2960.0 3136.0 3322.5 3520.1 3729.4 3951.2
5920.1 6272.1 6645.0 7040.2 7458.8 7902.3

11840.1 12544.2 13290.1 14080.3 14917.6 15804.6
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based on the rule of the nearest time alignment at the ANR-ARP
interval.

Based on the above analyses, the HTS algorithm is proposed,
which conveys the musical F0 and harmonic features by time–fre-
quency conjunctive coding. Generally, the actual verification needs
new designed CI product and tuning platform. However, the CI
vocoder simulation was an effective method for predicting CI audi-
tory perception [21–24]. Therefore, HTS synthetic sound can be
generated by the CI vocoder. The performance of the HTS algorithm
on music perception also can be evaluated by the pitch ranking and
melody recognition experiments for normal hearing (NH) subjects.

2. Materials and methods

2.1. Methods

2.1.1. CIS algorithm
The CIS algorithm is a classical sound encoding algorithm used

in existing CI products, which includes stages of pre-emphasis fil-
tering, band-pass filtering, envelope detection (consists of a recti-
fier followed by a low-pass filter), compression, and modulation
[11]. In the CIS algorithm, the amplitude envelope of each sub-
band of the sound is extracted and then coded to synthesize the
CI sound or to modulate the pulsed current level using a temporal
constant rate. However, the pitch (i.e., F0) and the harmonic char-
acteristics of a musical note are not focused and encoded accord-
ingly. This might be the key reason for poor music perception of
CIs.

2.1.2. HTS algorithm
Although modern CIs provide up to 22 stimulation channels,

information transfer remains limited for the perception of fine
spectrotemporal details [1]. Moreover, phase information also
affects the performance of music perception in CIs [25]. Therefore,
Fig. 2. Flowchart of the HT

3

the HTS algorithm is based on the CIS algorithm and adds the
temporal-frequency conjunctive encoding of important harmonics,
including the musical F0 extraction, the nearest important har-
monic mapping, the nearest pitch time alignment as well as the
amplitude envelope extraction on the existing sub-bands. Fig. 2
depicts the flowchart of the HTS algorithm.

The specific steps of the HTS algorithm were as follows.

(1) The music signal was preprocessed with a window length of
20 ms, and then the per-frame signal was pre-emphasized
and filtered using the first-order high-pass Butterworth filter
with a cutoff frequency of 1200 Hz.

(2) An all-phase band-pass filter bank was adopted, which is an
all-pass filter bank and each band-pass filter is an all-phase
FIR filter with no phase distortion and steep amplitude fre-
quency response [26,27]. The 22-channel 127-order all-
pass filter bank was designed to perform band-pass filtering
on the pre-emphasized signal. In this processor, the fre-
quency band was divided according to the non-linear Mel
scale, with a frequency range of 80 � 11025 Hz.

(3) The envelope of each band signal was extracted by half-
wave rectification and low-pass filtering (the fourth-order
Butterworth filter with a cutoff frequency of 400 Hz).

(4) On the other hand, a 1024-point fast Fourier transform anal-
ysis was performed on each frame of the music signal after
preprocessing, and the fundamental frequency of the per-
frame signal was extracted by subharmonic summation
[28]. Subsequently, the frequency and phase of each har-
monic signal were obtained according to the multiple rela-
tionships between the fundamental frequency and the
harmonics.

(5) The frequency of each band signal was selected according to
the nearest harmonic mapping rule. Because it is impossible
to completely transmit the harmonic characteristics of
S vocoder algorithm.
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music with the current 22 channels, we proposed the near-
est harmonic mapping rule to transmit the important har-
monics of the music signal. That is, the frequency of the
lowest harmonic in each band signal was selected as the fre-
quency of the CI vocoder’s corresponding band. This means
that the important harmonic frequency of each band signal
was transmitted. Fig. 3(a) shows the frequency selection
process of each band signal under the HTS algorithm.

(6) The phase of each band signal was selected according to the
nearest time alignment rule. Considering the limitation of
the ANR-ARP period, we proposed the nearest time align-
ment rule based on the characteristics of the auditory nerve.
That is, the stimulation interval of each band signal was
approximated to an integral multiple of the ANR-ARP, which
is the minimum stimulation interval in CI. In the vocoder
simulation, the phase of the lowest harmonic in each band
signal was selected as the phase of the corresponding CI
band. Therefore, the HTS algorithm can effectively encode
harmonic phase features. Fig. 3(b) shows the stimulation
interval selection process by the HTS algorithm.

(7) Finally, the envelope of each band signal was used to modu-
late a sinusoid carrier at the respective band frequency and
phase. The modulated sinusoid signals were then combined
across all bands to generate the HTS synthesized sound; the
synthetic window length of the sound was 2 ms.

2.2. Experiments and materials

To investigate the performance of the HTS algorithm in musical
pitch perception, we conducted pitch ranking and melody recogni-
tion experiments. The vocoder simulation platform was MATLAB
2020a. All experiment stimuli sounds come from violin, because
the violin is a typical stringed instrument with abundant harmon-
ics and a complex vibration system [31], and its sound is the worst
for CI users, then the violin-based experiments have practical
value. The violin sound was created by the Composer Master soft-
ware [32], and the sampling frequency was 22.05 kHz.

In studies of CI speech coding algorithms, two vocoder types
were often used: noise vocoder and tone vocoder [21,22,33].
Because the musical note signal is all voiced sound and mainly
composed of the F0 and harmonic components, the tone vocoder
Fig. 3. (a) Schematic diagram of nearest frequency mapping. If there were two or more ha
and only kept the lowest harmonic frequencies [29,30]. If there was only one harmonic fre
the center frequency of the corresponding frequency band. When there was no harm
Schematic diagram of nearest time alignment. It was assumed that when the F0 of the m
frequency band signal was 9.09 ms, therefore the minimum stimulus interval in the freq
band signal was the phase of the 110 Hz harmonic.
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is more suitable in CI music simulation [34]. Moreover, the
pulse-spreading harmonic complex vocoder [24] is also a new type
of tone vocoder. In this paper, the CI-synthesized music also used a
tone vocoder. Based on existing electrode bands (i.e., 22 channels)
in the HTS tone vocoder, the effect of the current spread of future
CI products should be similar to that of the existing CI product. The
HTS-synthesized sound was obtained according to the algorithm
flow in Fig. 2. While the CIS synthesized sound was obtained only
by the envelope modulation of each sinusoidal carrier (i.e., tone
vocoder), in which the frequency of the sinusoidal signal was the
center frequency of each band [33,34], most of them do not match
and align with the F0 or harmonics of the musical note.

Twenty NH subjects (twelve males and eight females, aged
20 � 30, mean age = 24) were recruited to participate in this study.
All subjects had no history of auditory nerve or hearing injury.
Before the experiment, the potential candidates were informed of
the experiment content and precautions, and they agreed to partic-
ipate in the experiments. All testing was performed in an audio
laboratory with a comfortable environment and without noise.
The stimuli were played at a comfortable listening level via head-
phones (Bose QC25), and there was no feedback in the experiment.

The HTS algorithm was compared to the other two algorithms.
The first algorithm was the traditional CIS algorithm (default low-
pass filter (LPF) cutoff frequency of 400 Hz). The second algorithm
is called the frequency mapping (FM) algorithm, which only maps
important harmonics to related sub-bands without the time align-
ment. The FM algorithm is a middle method designed to compare.
The FM-synthesized sound was obtained by the envelope modula-
tion of the sinusoidal carrier at an important harmonic frequency
of each sub-band.

In the pitch ranking experiment, subjects were asked to deter-
mine whether the final note was higher or lower in pitch than
the first two and to select their response from the closed set of
two options (higher and lower) on the screen in front of them
[35]. Each stimulus consisted of three notes presented sequen-
tially. Every note had a duration of 500 ms, and the time interval
between notes was 240 ms. The first two notes had the same pitch,
while the third note had a different pitch. A total of 450 synthe-
sized sounds (three types of algorithms � three types of base
frequencies � 5 types of semitone spacing � 10 trials) were evalu-
ated. The base frequencies were E3 (164 Hz), C4 (262 Hz) and E5
rmonic frequencies in a certain frequency band, we discarded the higher harmonics
quency in a certain frequency band, the harmonic frequency was directly mapped to
onic signal in the band, the HTS algorithm did not perform signal processing. (b)
usic signal was 110 Hz and the ANR-ARP was 1 ms, the harmonic period of the first
uency band was set to 9 ms. In the vocoder simulation, the phase of the frequency
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(663 Hz). Eighteen notes were selected, they are 164, 174, 185, 196,
220, 246, 262, 277, 293, 311, 349, 392, 663, 698, 740, 784, 880 and
987 Hz. The stimuli were presented in pairs of pitches ranging in
interval sizes of 1, 2, 3, 5, or 7 semitones, and 10 trials were pre-
sented for each interval size at each base frequency. In the exper-
iment, the subjects were first required to obtain a score of 80%
correct or higher for the pitch ranking of the original sound. Then,
the synthesized sounds were divided into nine groups (three
methods � three base frequencies). In the test, each synthesized
sound of the group was randomly played in order to eliminate
the effect of sound order on the experimental results.

In the melody recognition experiment, the subjects were asked
to identify and select the melody names from the closed set of five
melody names on the screen in front of them [36]. All melodies
were created in middle C (the F0 range from 261 to 523 Hz). To
eliminate the interference of rhythm information on melody recog-
nition, each melody comprised 12 equal-duration notes, and the
duration of each melody was about 5 s. To evaluate the robustness
of the melody perception of the proposed method, we further car-
ried out the experiments under noise conditions. A total of 30 syn-
thesized sounds (five melodies � three encoding algorithms � two
conditions (in quiet and signal–noise ratios SNRs = 0 dB)) were
evaluated. Among them, the stimuli materials included five famil-
iar music melodies, namely Happy Birthday to You, Jingle Bells, Lit-
tle Tigers, Welcome to Beijing, and Jasmine. The noise type was
Gaussian white noise. Before the experiment, subjects were famil-
iarized with five original melody segments by repeat playing. Then,
the experiments were divided into six groups, randomly playing
the synthesized sounds of three methods (CIS, FM, HTS) in quiet
or noisy (SNR = 0 dB) conditions, respectively.
Fig. 4. Pitch ranking results under five semitone spacing conditions and three algorithm
the standard error of the mean. The asterisk represents the significance of the analysis
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3. Result

3.1. Pitch ranking

Fig. 4 shows the results for pitch ranking from vocoder synthe-
sized sounds with the three algorithms, three base frequencies, and
five semitone spacing, respectively. In general, subjects’ percent
correct in pitch ranking gradually increases as the semitone spac-
ing increases. Under the three base frequency conditions, subjects’
average percent correct in pitch ranking of the HTS synthesized
sounds is higher than that of the other two synthesized sounds.
The average percent correct of FM algorithm is 10.3%, 3.9%, and
7.3% higher than the traditional CIS algorithm at the baseline of
164 Hz, 262 Hz and 663 Hz, respectively. The results of the analysis
of variance (ANOVA) suggest that the HTS algorithm significantly
improves the performance of pitch ranking at the base frequencies
of 663 Hz (F2;12 ¼ 4:79; p < 0:05). However, its improvement at the
base frequency of 164 Hz (F2;12 ¼ 3:17; p ¼ 0:0783) and 262 Hz
(F2;12 ¼ 1:93; p ¼ 0:1877) is not significant.
3.2. Melody recognition

Fig. 5 shows the results for the melody recognition of synthe-
sized sounds by three vocoder algorithms under two conditions
(in quiet and in noisy with SNR = 0 dB). It can be seen that the aver-
age accuracy of melody recognition of the HTS is obviously higher
than that of the two others. The accuracy of FM algorithm is only
6.7% and 8.3% higher than the traditional CIS algorithm in quiet
and noisy, respectively. ANOVA suggests that the HTS algorithm
s. (a) baseline 164 Hz, (b) baseline 262 Hz, (c) baseline 663 Hz. Black bars represent
of variance.



Fig. 5. Melody recognition results. (a) the bar chart of three algorithms in quiet, (b) the bar chart of three algorithms in noisy. Black bars represent the standard error of the
mean. The asterisk represents the significance of the ANOVA. And the corresponding confusion matrix of (c) the default CIS, (d) the FM, and (e) the HTS in quiet condition,
respectively.
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significantly improves the melody recognition performance both in
quiet (F2;12 ¼ 15:35; p < 0:001) and noise (F2;12 ¼ 25:39; p < 0:001)
conditions. The accuracy of each melody under the HTS algorithm
all exceeds 90%, but the accuracies of melody under the CIS and FM
algorithms are lower and unstable. Subjects are more easily able to
recognize melodies when listening to the HTS synthesized music
than listening to the CIS synthesized music. From Fig. 5, the results
of the CIS seem quite robust to the noise, but the accuracy of mel-
ody recognition is much lower than that of the HTS. Furthermore,
the melody recognition accuracy for CIS algorithm and HTS algo-
rithm decreases by 3.67% and 1% under noise compared to the
quiet condition, respectively. It turns out that the CIS algorithm
has worse performance on music coding, even in quiet conditions,
CIS synthesized music sounds as poor as in noisy conditions. Mean-
while, Fig. 5(c), (d) and (e) show the confusionmatrix of the default
CIS, FM, and HTS algorithms under quiet conditions, respectively. It
can be found that the confusion matrix results match the bar chart
results.

It is worth mentioning that the performance of melody recogni-
tion of the HTS is both significantly higher in quiet and noisy
(SNR = 0 dB) conditions and is also stable, this indicates that the
HTS algorithm has an excellent encoding effect for music features
and has a strong noise robustness.
Fig. 6. Waveform of the second band of the violin note at 220 Hz. Comparison of the
original signal with the reconstructed signal under the HTS algorithm (top) and the
CIS algorithm (bottom).
4. Discussion

4.1. Pitch

The music signal is characterized by the regular F0 distribution
and harmonic interrelation. In terms of pitch recognition, the HTS
algorithm performs better than two other algorithms (see Fig. 4).
The main reason is that the HTS vocoder encoded the features of
the F0 and some important harmonics of the note onto the corre-
sponding sub-bands and phase timing. However, in the CIS voco-
der, the central frequency of each band is fixed and mostly is not
matched to the important harmonic of the note and there is also
no time encoding of the music note on each band. Thus, the CIS
6

vocoder cannot accurately transmit the music pitch and harmonic
features. Moreover, we compare the original signal with the recon-
structed signals using the HTS algorithm and the CIS algorithm,
such as the second sub-band (168–266 Hz). As shown in Fig. 6
(a) and (b), the HTS algorithm retains more time–frequency fine
cues of the music signal and the HTS vocoder reconstructed signal
better retains the phase information of the original signal. In con-
trast, the CIS reconstructed signal is significantly inconsistent with
the original signal. In addition, the overall differences between dif-
ferent algorithms can also be seen from the spectrogram. As shown
in Fig. 7, the harmonic structure features of the HTS synthesized
sound is more obvious than that of CIS synthesized sound. More-
over, the spectrogram of the HTS simulated sound is closer to the
spectrogram of the original sound. Consequently, it is easy to iden-
tify the pitch ranking of the HTS-synthesized sound but not the
CIS-synthesized sound.



Fig. 7. The spectrograms of the original and synthesized sounds for the music Happy Birthday to You by different algorithms.
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Meanwhile, the HTS algorithm is different from the F0mod
strategy [37]. For the F0mod algorithm, although the input sound
signal is presented to two parallel blocks: the first block is the filter
banks which split the signal into 22 channels and extract the rela-
tively slow varying envelopes of each channel. The second block
estimates the F0 of the input signal, and the 22 sub-band envelopes
are then modulated by only F0 sinusoidal signal [37]. In contrast,
the HTS algorithm not only extracts F0 feature and the envelope
of the sub-bands, but also modulates the envelope of important
harmonics sub-bands of music signal by the combination coding
of harmonic frequency mapping and time alignment (i.e., the phase
information of the harmonic frequency). Therefore, the HTS algo-
rithm may convey more musical features than F0mod algorithm.

A melody is composed of multiple notes and its note changes
are regular. Consequently, melody recognition should be easier
than pitch ranking. From Fig. 4 and Fig. 5, it can be found that
the melody recognition improvement by the HTS algorithm is
greater than pitch ranking. Even under noisy condition (see
Fig. 5), the results of melody recognition by the HTS algorithm
are also good. This further indicates that the HTS algorithms can
robustly encode pitch features for practical music segments.

Additionally, the performance of the melody Happy Birthday to
You is significantly higher than the other four melodies. There may
be two possible reasons for the results. First, the selected 12 notes
with the same length (i.e., removed the original rhythm) (refer:
Fig. 8 (a)/(b)) of the melody Happy Birthday to You are four com-
plete melody fragments, while the 12 notes of the same duration
of the other four melodies are not complete melody fragments in
the end (refer: Fig. 8, (c)/(d), (e)/(f), (g)/(h), (i)/(j)). On the other
Fig. 8. Comparison of 12 notes
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hand, it may be due to the fact that the subjects are more familiar
with the melody Happy Birthday to You than the other four
melodies.

4.2. Timbre

Based on the existing 22 electrode channels, the HTS vocoder
algorithm mainly aimed at pitch features encoding of CI synthesis
music. Meanwhile, the improvement might also affect the musical
quality (i.e., timbre) of CI vocoder. However, timbre is complex and
abstract and has been considered one of the most difficult acoustic
features to comprehend. Thus, its evaluation should be a multidi-
mensional and complex assessment problem [38]. It is known that
the perceptual evaluation of speech quality (PESQ) is a usual objec-
tive index mainly used for speech, whose score ranges from �0.5 to
4.5 [39], while the perception model-based quality (PEMO-Q) score
is a more general objective index of audio quality (including speech
and music), whose score ranges from �4 (i.e., very annoying
impairment) to 0 (i.e., imperceptible impairment) [40]. Therefore,
we use the two indexes to evaluate the timbre perception of the
synthesized 18 single notes of three vocoders. In the timbre evalu-
ation, the materials are the same as the sounds of pitch ranking
test. When the testing music segments are all the same in inten-
sity, length (i.e., no rhythm) and pitch, the scores of PESQ and
PEMO-Q are calculated, respectively. Fig. 9 shows the average PESQ
and PEMO-Q scores.

It can be found that the average PESQ and PEMO-Q scores of
HTS algorithm are both higher than that of the other two algo-
rithms, which indicates that the waveform distortion of the HTS
of the 5 melody segments.



Fig. 9. (a) PESQ and (b) PEMO-Q scores of single notes of the three algorithms. Black bars represent the standard error of the mean.

Q. Meng, G. Liu, L. Tian et al. Applied Acoustics 205 (2023) 109288
synthesized music is the smallest. It is also found that the average
PEMO-Q scores of HTS algorithm are much higher than that of the
other two algorithms. This further indicates that the timbre degra-
dation of the HTS-synthesized music is much smaller. Hence, the
results show that the HTS vocoder algorithm not only improves
CI music pitch perception but also increases the CI timbre effect.
The t-test results showmarginally significant differences for PESQ
evaluation (p = 0.074) and significant differences for PEMO-Q eval-
uation (p < 0.001) between the default CIS and HTS.
4.3. Electrodogram

As a visual comparison, the electrodograms obtained by CIS and
HTS for a violin melody of Happy Birthday to You are provided in
Fig. 10(a) and (b), respectively, along with the melody’s fundamen-
tal frequency in Fig. 10(c). Electrodograms are generated based on
the CCi-Mobile platform [41]. The electrodogram is defined as elec-
tric pulse stimulation patterns delivered by the sound coding strat-
egy, i.e., the current levels delivered by each electrode over time
[1]. Electrodograms are an effective way to compare how acoustic
features are transmitted by different sound coding strategies [13].
There are 22 electrodes in the tone vocoder simulation, while not
all electrodes are active in the HTS algorithm because some lower
sub-bands might not include any F0 and harmonics of the note seg-
ment. At the same time, the selected lowest electrodes (i.e. sub-
bands, in Fig. 10(b)) by the HTS are consistent with the distribution
of fundamental frequency in Fig. 10(c). The obvious difference
between the two electrodograms also can prove the improved
effect for CI synthesized music by HTS algorithm.
Fig. 10. The CI encoding electrodograms and
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In addition, there are some limitations to this study. Although
the performance of HTS algorithm for NH subjects has significantly
improved, this is only the first step of verification work, and it may
be seen as the ideal level for future CI users. Further verification of
the actual product will depend on new designs on CI product soft-
ware [42], decoding chips and wireless transmission protocols.
Although the work will be time-consuming, it will be a practical
benefit to a larger number of CI users. In this paper, this algorithm
has experimented with only single instrument sound. However, for
the complex sounds of multi-instruments, it could be adaptable to
apply by adding the related preprocesses, such as sound source
separation [43] and extraction of the main melody pitch [44]. Since
the HTS algorithm only encoded and transmitted the cues of F0 and
lower important harmonics of the appropriate music note, it
resulted in that the higher the note, the fewer harmonics be
matched and encoded on the fewer sub-bands (channels). When
the pitch of a note is so high that its 1/F0 duration is less than
the ANR-ARP, the HTS algorithm will become similar to the CIS
or FM algorithm. Because in this case, even for the F0 component
of the note, there are no bands (i.e., electrodes) to realize the
enhanced time encoding, the whole harmonics of the note will
be mapped to the spectral envelopes of the classical CIS algorithm.
Therefore, the HTS algorithm is a partial music enhancement algo-
rithm based on the existing CI electrode layout.

In the future CI product, the HTS algorithm may encode and
convey more pitch and harmonic features of music notes. By
switching speech/music mode, the HTS algorithm can extend the
CI product’s function based on existing electrodes to improve CI
user’s music perception.
pitch contour of Happy Birthday to You.
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5. Conclusion

This study proposed the HTS algorithm that conjunctly encoded
the frequency and temporal features of important music harmon-
ics based on the existing CI electrode layout. We conducted pitch
ranking and melody recognition experiments based on CI vocoder
and compared them with CIS algorithm to evaluate the HTS effects.
The experimental results showed that HTS algorithm could effec-
tively encode and convey more cues of music features and make
the pitch ranking and melody recognition significantly improved.
Meanwhile, it also increased the timbre perception. Overall, the
HTS algorithm has the potential to improve the music perception
of CI users.
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